ا- چچه تعداد از عبارتههاى زير نادرسِتـ اسـت؟

f(${ }^{\mu}$
$\mu(\mu$
r (r
 r
 Y「 「) آزمايشههاى فيزيـى
r- قانونهاى فيزيكى:

 Y

ه- كدم گزينه، رابطهُ بين (آزمايش هاى فيز يكى") و (انظر يههاى فيزيكى") را بهد درستى بيان مى كند؟

 r Y

ب

$$
1(r
$$

$$
r(r
$$

V- شا شخصى با اعمال نيروى افقى اين پديدهى فيزيكى كدامیی از نيروهايى كه درگزينهها آمدهاند، از لحاظ مهم بودن يا جزئى بودن اثر نيرو، با بقيه

 Y）وزن كاغذ با تغيير فاصله از مر كز زمين تغيير نمى كند．Y）كاغذ را بهصورت يـى جسم نتطهاى در نظر مى گيريم．

(1) مقاومت هوا r r اندازه و شكل تو ت

ب）تفاو ت وزن تو تو در ارتفاعهاى مختلف از سطح زمين
「 「）نيروى جاذبهى زمين
 آن فراهم شود جپه نام دارده؟
「) به نظم درآور دن مشاهدات

¢ 4 ا－در كدام گزينه، دو كميت اولى، نردهاى و دو كميت بعدى بردارى میباشند؟ 1）جرم و وزن شخ شَ

$$
\begin{aligned}
v / \psi \times 1 \cdot 0^{-1} g>r / . q \times 1 \cdot \cdot^{r} \mathrm{mg}(r \\
r / r \times 1 \cdot 0^{-r} \mathrm{~m}>\cdot / \mu \mu \mathrm{mm}(\psi
\end{aligned}
$$

$$
\begin{array}{r}
\Delta / \cdot r \mathrm{~ms}<4 \times 1 \cdot^{-r} \mathrm{~s}(1 \\
r / .4 \mathrm{~cm}<\cdot / \psi \times 1 \cdot \cdot^{-\varphi} \mathrm{km}(r
\end{array}
$$

$$
\begin{aligned}
& \text { (r } \\
& \text { ب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 「 (}
\end{aligned}
$$

 هواپيمايى در ارتفاع
$v / 0(4$
$\wedge / r(r$
$\Delta / V(r$
 (هر شبانهروز را معادل با Y MY ساءت در نظر بگيريد.)

$$
\frac{r}{r D}\left(r \quad \frac{r \Delta}{r}(r\right.
$$

$$
\frac{1}{1 r}(r
$$

أ- عرض

$$
r 0 \times 10^{-19}\left(r \quad 1 \times 10^{-10}\left(r \quad 1 . \times 10^{-19}\left(r \quad r / 0 \times 1 \cdot{ }^{10}(1)\right.\right.\right.
$$

-ץ- كداميك از گزينههاى زير، يكاى كميت فرعى (فشار)" را برحسب يكاهاى اصلى كيلو گرم (kg) ، متر (m) و ثانيه (s) درست نشان مى دهد؟ (راهنمايیى: از رابطهى P =

$$
\mathrm{kg} \cdot \mathrm{~m}^{r} \cdot \mathrm{~s}^{r}\left(r ^ { r } \quad \mathrm { kg } \cdot \mathrm { m } ^ { - 1 } \cdot \mathrm { s } ^ { - r } \left(r \quad \mathrm { kg } \cdot \mathrm { m } \cdot \mathrm { s } ^ { - r } \left(r \quad \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}()\right.\right.\right.
$$

$$
\Delta \times 10^{9}\left(r^{r} \quad 1 / \wedge \times 10^{\vee}\left(r \quad \Delta \times 10^{r}\left(r \quad 1 / \wedge \times 10^{0}(1\right.\right.\right.
$$

$$
9 / 9 \times 10^{-r}\left(r \quad r / 9 \times 10^{-r}\left(r \quad \text { (r) } 9 / 9 \times 10^{-1}(1\right.\right.
$$

$\frac{\mathrm{s}}{\mathrm{kg}}\left(\begin{array}{r}\mathrm{r} \\ \mathrm{k} \\ \mathrm{kg}\end{array} \mathrm{r}^{r} \quad \frac{\mathrm{~kg}}{\mathrm{~s}}\left(r \quad \frac{\mathrm{~kg}}{\mathrm{r}}()\right.\right.$

