ا- جدول زير سرى الكتريسيتهى مالششى چتند جسم را نشان مى دهد. با توجه به آن كداميـى از عبار تهاى زير ينادرست
 $\left(\mathrm{e}=1 / 9 \times 1 \cdot{ }^{-19} \mathrm{C}\right)$

$$
1 / 914
$$

$\mu / \lambda(r$
iv/9 (r
9/4 (1)
r-

ץ
$\stackrel{\mathrm{A}}{\bullet} \mathrm{q}_{1}=\stackrel{\bullet}{\mu \mathrm{C}} \quad \mathrm{q}_{\mathrm{r}}^{\bullet}=q \mu \mathrm{C}{ }^{(r}$

$\mathrm{q}_{1}=r \stackrel{\bullet}{\bullet} \stackrel{\mathrm{~A}}{\mathrm{q}_{\mathrm{r}}}=-r \mu \mathrm{C}{ }^{\bullet}{ }^{(r}$
 قرار گرفتهاند. اگر qu
(. . $\mathrm{k}=9 \times 1 \cdot \frac{9 \mathrm{Nm}^{r}}{\mathrm{C}^{r}}, \mathrm{~g}=1 \cdot \frac{\mathrm{~N}}{\mathrm{~kg}}$)

$$
\psi(\psi
$$

$$
r \sqrt{r}(r
$$

$$
r \sqrt{r}(1
$$

 كدام كزينه در مورد بار كرهمها درسـت استـبـ

 r ب) بار دو كره قبل از تماس همنام ولى بعد از تماس مى تواند همنام يا ناهمنام باشد.

$$
\begin{aligned}
& \text { اين دو جسم چگكونه باشد تا بار آنها يكسان شو دو (} \\
& \text { (1) جسم B به جسم A } \\
& \text { (Y) جسم B به جسم A A } \\
& \text { r) جسم A } \\
& \text { 4) جسم A }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 「 }
\end{aligned}
$$

دبير ستان فاخران
درس：فيزيـى
مدت：•4 دقيقه

Q

A
B

$$
\begin{array}{ll}
\frac{1}{\psi} q_{B}=q_{A}, q_{A} q_{B}>\cdot(r & \frac{1}{\psi}\left|q_{B}\right|=\left|q_{A}\right|, q_{A} q_{B}<\cdot() \tag{1}\\
q_{B}=\frac{1}{4} q_{A}, q_{A} q_{B}>\cdot(\psi & \left|q_{B}\right|=\frac{1}{\psi}\left|q_{A}\right|, q_{A} q_{B}<\cdot(r
\end{array}
$$

q－بر بار q－كه بين دو كرهى هادى باردار A و B قرار دارد، نيروى F مطابق شكل وارد می شود．

 （1）از A به A
（Y）از از
r

 （）خنثى يا مثبت

 Y 1）هم ديخر را جذ بـ بـ مى كند ．

 （Y）كمتر می شود
 （1）زياد می شود「

$$
\frac{1}{r}(\psi
$$

$$
\frac{r}{r}(r
$$

 س الكتريكى وارد بر بار و نيروى الكتريكى وارد بر بار فاصله $\wedge \cdot(\mu \quad q \cdot(r$

برابر شود شدت ميدان الكتريكى در نقطه مذكور چند برابر حالت اول مى شود؟

$$
1 / 0(r \quad r / 0(r) \quad r(r) \quad 0(1)
$$

19- اگر بزرگی ميدان الكتريكى حاصل از بار نقطهاى

تاريخ: •0/0/0/0
دبير ستان فاخران
درس: فيزيـى
مدت: •4 دقيقه

اY- مطابق شكل زير، سه بار الكتريكى نقطهاى در سه رأس يـى مس مستطيل ثابت
 واحد SI كدام است؟ (k ثابت كولن در SI اس است.
.$/ .4 \mathrm{k}(\mathrm{r}$
$\cdot / \cdot r k(1$
ب
$\cdot / \cdot \Delta \mathrm{k}\left({ }^{-}\right.$
 ميدان در همان نقطه

$$
-\frac{1}{r}\left(r \quad+\frac{1}{r}\left(r \quad-\frac{1}{r}\left(r \quad+\frac{1}{r}()\right.\right.\right.
$$

 كدام است؟ $\frac{Q}{q}$

$$
\begin{gathered}
r \sqrt{r}(1 \\
r \sqrt{r}(r \\
-r \sqrt{r}(r \\
-r \sqrt{r}(r
\end{gathered}
$$

هץ- در شكل مقابل، بزرگى ميدان الكتريكى حاصل از بارها در وسط دو بار (نقطهى O) برابر E است. اگر هr درصد از

צץ- دو بار الكتريكى نقطهاى الكتريكى در چخند سانتى مترى از بار Q|

$$
\begin{aligned}
& \left|q_{C}\right|>\left|q_{B}\right|>q_{A} \text { (} \\
& q_{C}>q_{B}>\left|q_{A}\right| \text {, } \\
& q_{C}>q_{A}>\left|q_{B}\right| \text {, } r \text {) مثبت - منغى - مثبت } \\
& \left|\mathrm{q}_{\mathrm{C}}\right|>\mathrm{q}_{\mathrm{B}}>\left|\mathrm{q}_{\mathrm{A}}\right| \text {, }{ }^{\text {منغى - مثبت - منغى }}
\end{aligned}
$$

د $\mathrm{q}_{\mathrm{Y}}=-r \mu \mathrm{C}, \mathrm{q}_{1}=+r \mu \mathrm{C}$ C
فاصلهى معينى از هم قرار دارند در نقطهى A روى محور X كدام اسـ؟؟

\|انتهاى متُت سرى
A
B
C
D
انتهاى منغى سرى

 كزينهاهاى زير صحيح اسـت؟

 A ا را با مادهى D مالش دهيم، متتقل مییود.
r.
 وارد می كند چچند نيو تن اسـت؟ $\frac{\mu}{\mu}(r$
$r(r$ $\frac{\text { rv }}{19}(1)$
1/ar (r

اب- در شكل روبهرو، دو بار الكتريكى هماندازه و ناهمنام • > الكتريكى غيريـكنواخت
 وارد مى شود. همحتنين به بار

$$
\mathrm{F}_{\mathrm{YA}_{\mathrm{A}}<\mathrm{F}_{1 \mathrm{~B}}\left(Y \quad \mathrm{~F}_{Y \mathrm{~B}}<\mathrm{F}_{1 \mathrm{~A}}\left(r \quad \mathrm{~F}_{Y \mathrm{~B}}<\mathrm{F}_{1 \mathrm{~B}}(\mathrm{r}\right.\right.}^{\mathrm{F}_{Y \mathrm{~A}}<\mathrm{F}_{1 \mathrm{~A}}(1)}
$$

